3.3.51 \(\int \frac {(e \sec (c+d x))^{3/2}}{(a+i a \tan (c+d x))^3} \, dx\) [251]

Optimal. Leaf size=132 \[ \frac {2 e^2 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{15 a^3 d \sqrt {\cos (c+d x)} \sqrt {e \sec (c+d x)}}+\frac {4 i e^2}{9 a d \sqrt {e \sec (c+d x)} (a+i a \tan (c+d x))^2}+\frac {2 i e^2}{45 d \sqrt {e \sec (c+d x)} \left (a^3+i a^3 \tan (c+d x)\right )} \]

[Out]

2/15*e^2*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/a^3/d/cos(d*x+c
)^(1/2)/(e*sec(d*x+c))^(1/2)+4/9*I*e^2/a/d/(e*sec(d*x+c))^(1/2)/(a+I*a*tan(d*x+c))^2+2/45*I*e^2/d/(e*sec(d*x+c
))^(1/2)/(a^3+I*a^3*tan(d*x+c))

________________________________________________________________________________________

Rubi [A]
time = 0.12, antiderivative size = 132, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 28, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.143, Rules used = {3581, 3583, 3856, 2719} \begin {gather*} \frac {2 i e^2}{45 d \left (a^3+i a^3 \tan (c+d x)\right ) \sqrt {e \sec (c+d x)}}+\frac {2 e^2 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{15 a^3 d \sqrt {\cos (c+d x)} \sqrt {e \sec (c+d x)}}+\frac {4 i e^2}{9 a d (a+i a \tan (c+d x))^2 \sqrt {e \sec (c+d x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(e*Sec[c + d*x])^(3/2)/(a + I*a*Tan[c + d*x])^3,x]

[Out]

(2*e^2*EllipticE[(c + d*x)/2, 2])/(15*a^3*d*Sqrt[Cos[c + d*x]]*Sqrt[e*Sec[c + d*x]]) + (((4*I)/9)*e^2)/(a*d*Sq
rt[e*Sec[c + d*x]]*(a + I*a*Tan[c + d*x])^2) + (((2*I)/45)*e^2)/(d*Sqrt[e*Sec[c + d*x]]*(a^3 + I*a^3*Tan[c + d
*x]))

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 3581

Int[((d_.)*sec[(e_.) + (f_.)*(x_)])^(m_)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[2*d^2*
(d*Sec[e + f*x])^(m - 2)*((a + b*Tan[e + f*x])^(n + 1)/(b*f*(m + 2*n))), x] - Dist[d^2*((m - 2)/(b^2*(m + 2*n)
)), Int[(d*Sec[e + f*x])^(m - 2)*(a + b*Tan[e + f*x])^(n + 2), x], x] /; FreeQ[{a, b, d, e, f, m}, x] && EqQ[a
^2 + b^2, 0] && LtQ[n, -1] && ((ILtQ[n/2, 0] && IGtQ[m - 1/2, 0]) || EqQ[n, -2] || IGtQ[m + n, 0] || (Integers
Q[n, m + 1/2] && GtQ[2*m + n + 1, 0])) && IntegerQ[2*m]

Rule 3583

Int[((d_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[a*(d*
Sec[e + f*x])^m*((a + b*Tan[e + f*x])^n/(b*f*(m + 2*n))), x] + Dist[Simplify[m + n]/(a*(m + 2*n)), Int[(d*Sec[
e + f*x])^m*(a + b*Tan[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, m}, x] && EqQ[a^2 + b^2, 0] && LtQ[n
, 0] && NeQ[m + 2*n, 0] && IntegersQ[2*m, 2*n]

Rule 3856

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rubi steps

\begin {align*} \int \frac {(e \sec (c+d x))^{3/2}}{(a+i a \tan (c+d x))^3} \, dx &=\frac {4 i e^2}{9 a d \sqrt {e \sec (c+d x)} (a+i a \tan (c+d x))^2}+\frac {e^2 \int \frac {1}{\sqrt {e \sec (c+d x)} (a+i a \tan (c+d x))} \, dx}{9 a^2}\\ &=\frac {4 i e^2}{9 a d \sqrt {e \sec (c+d x)} (a+i a \tan (c+d x))^2}+\frac {2 i e^2}{45 d \sqrt {e \sec (c+d x)} \left (a^3+i a^3 \tan (c+d x)\right )}+\frac {e^2 \int \frac {1}{\sqrt {e \sec (c+d x)}} \, dx}{15 a^3}\\ &=\frac {4 i e^2}{9 a d \sqrt {e \sec (c+d x)} (a+i a \tan (c+d x))^2}+\frac {2 i e^2}{45 d \sqrt {e \sec (c+d x)} \left (a^3+i a^3 \tan (c+d x)\right )}+\frac {e^2 \int \sqrt {\cos (c+d x)} \, dx}{15 a^3 \sqrt {\cos (c+d x)} \sqrt {e \sec (c+d x)}}\\ &=\frac {2 e^2 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{15 a^3 d \sqrt {\cos (c+d x)} \sqrt {e \sec (c+d x)}}+\frac {4 i e^2}{9 a d \sqrt {e \sec (c+d x)} (a+i a \tan (c+d x))^2}+\frac {2 i e^2}{45 d \sqrt {e \sec (c+d x)} \left (a^3+i a^3 \tan (c+d x)\right )}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.
time = 0.93, size = 140, normalized size = 1.06 \begin {gather*} -\frac {e^{-i d x} \sec ^2(c+d x) (e \sec (c+d x))^{3/2} (\cos (d x)+i \sin (d x)) \left (8+8 \cos (2 (c+d x))+6 e^{2 i (c+d x)} \sqrt {1+e^{2 i (c+d x)}} \, _2F_1\left (-\frac {1}{4},\frac {1}{2};\frac {3}{4};-e^{2 i (c+d x)}\right )+3 i \sin (2 (c+d x))\right )}{45 a^3 d (-i+\tan (c+d x))^3} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(e*Sec[c + d*x])^(3/2)/(a + I*a*Tan[c + d*x])^3,x]

[Out]

-1/45*(Sec[c + d*x]^2*(e*Sec[c + d*x])^(3/2)*(Cos[d*x] + I*Sin[d*x])*(8 + 8*Cos[2*(c + d*x)] + 6*E^((2*I)*(c +
 d*x))*Sqrt[1 + E^((2*I)*(c + d*x))]*Hypergeometric2F1[-1/4, 1/2, 3/4, -E^((2*I)*(c + d*x))] + (3*I)*Sin[2*(c
+ d*x)]))/(a^3*d*E^(I*d*x)*(-I + Tan[c + d*x])^3)

________________________________________________________________________________________

Maple [B] Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 387 vs. \(2 (140 ) = 280\).
time = 0.81, size = 388, normalized size = 2.94

method result size
default \(\frac {2 \left (20 i \left (\cos ^{5}\left (d x +c \right )\right ) \sin \left (d x +c \right )+3 i \sqrt {\frac {1}{1+\cos \left (d x +c \right )}}\, \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \EllipticF \left (\frac {i \left (-1+\cos \left (d x +c \right )\right )}{\sin \left (d x +c \right )}, i\right ) \cos \left (d x +c \right ) \sin \left (d x +c \right )-3 i \sqrt {\frac {1}{1+\cos \left (d x +c \right )}}\, \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \EllipticE \left (\frac {i \left (-1+\cos \left (d x +c \right )\right )}{\sin \left (d x +c \right )}, i\right ) \cos \left (d x +c \right ) \sin \left (d x +c \right )-20 \left (\cos ^{6}\left (d x +c \right )\right )-9 i \sin \left (d x +c \right ) \left (\cos ^{3}\left (d x +c \right )\right )+3 i \sqrt {\frac {1}{1+\cos \left (d x +c \right )}}\, \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \EllipticF \left (\frac {i \left (-1+\cos \left (d x +c \right )\right )}{\sin \left (d x +c \right )}, i\right ) \sin \left (d x +c \right )-3 i \sqrt {\frac {1}{1+\cos \left (d x +c \right )}}\, \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \EllipticE \left (\frac {i \left (-1+\cos \left (d x +c \right )\right )}{\sin \left (d x +c \right )}, i\right ) \sin \left (d x +c \right )+19 \left (\cos ^{4}\left (d x +c \right )\right )-2 \left (\cos ^{2}\left (d x +c \right )\right )+3 \cos \left (d x +c \right )\right ) \left (1+\cos \left (d x +c \right )\right )^{2} \left (-1+\cos \left (d x +c \right )\right )^{2} \left (\frac {e}{\cos \left (d x +c \right )}\right )^{\frac {3}{2}} \cos \left (d x +c \right )}{45 a^{3} d \sin \left (d x +c \right )^{5}}\) \(388\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*sec(d*x+c))^(3/2)/(a+I*a*tan(d*x+c))^3,x,method=_RETURNVERBOSE)

[Out]

2/45/a^3/d*(20*I*cos(d*x+c)^5*sin(d*x+c)+3*I*(1/(1+cos(d*x+c)))^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*Ellipt
icF(I*(-1+cos(d*x+c))/sin(d*x+c),I)*cos(d*x+c)*sin(d*x+c)-3*I*(1/(1+cos(d*x+c)))^(1/2)*(cos(d*x+c)/(1+cos(d*x+
c)))^(1/2)*EllipticE(I*(-1+cos(d*x+c))/sin(d*x+c),I)*cos(d*x+c)*sin(d*x+c)-20*cos(d*x+c)^6-9*I*cos(d*x+c)^3*si
n(d*x+c)+3*I*(1/(1+cos(d*x+c)))^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*EllipticF(I*(-1+cos(d*x+c))/sin(d*x+c)
,I)*sin(d*x+c)-3*I*(1/(1+cos(d*x+c)))^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)*EllipticE(I*(-1+cos(d
*x+c))/sin(d*x+c),I)+19*cos(d*x+c)^4-2*cos(d*x+c)^2+3*cos(d*x+c))*(1+cos(d*x+c))^2*(-1+cos(d*x+c))^2*(e/cos(d*
x+c))^(3/2)*cos(d*x+c)/sin(d*x+c)^5

________________________________________________________________________________________

Maxima [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: RuntimeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*sec(d*x+c))^(3/2)/(a+I*a*tan(d*x+c))^3,x, algorithm="maxima")

[Out]

Exception raised: RuntimeError >> ECL says: THROW: The catch RAT-ERR is undefined.

________________________________________________________________________________________

Fricas [C] Result contains higher order function than in optimal. Order 9 vs. order 4.
time = 0.13, size = 115, normalized size = 0.87 \begin {gather*} \frac {{\left (12 i \, \sqrt {2} e^{\left (5 i \, d x + 5 i \, c + \frac {3}{2}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, e^{\left (i \, d x + i \, c\right )}\right )\right ) + \frac {\sqrt {2} {\left (5 i \, e^{\frac {3}{2}} + 12 i \, e^{\left (6 i \, d x + 6 i \, c + \frac {3}{2}\right )} + 23 i \, e^{\left (4 i \, d x + 4 i \, c + \frac {3}{2}\right )} + 16 i \, e^{\left (2 i \, d x + 2 i \, c + \frac {3}{2}\right )}\right )} e^{\left (\frac {1}{2} i \, d x + \frac {1}{2} i \, c\right )}}{\sqrt {e^{\left (2 i \, d x + 2 i \, c\right )} + 1}}\right )} e^{\left (-5 i \, d x - 5 i \, c\right )}}{90 \, a^{3} d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*sec(d*x+c))^(3/2)/(a+I*a*tan(d*x+c))^3,x, algorithm="fricas")

[Out]

1/90*(12*I*sqrt(2)*e^(5*I*d*x + 5*I*c + 3/2)*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, e^(I*d*x + I*c)
)) + sqrt(2)*(5*I*e^(3/2) + 12*I*e^(6*I*d*x + 6*I*c + 3/2) + 23*I*e^(4*I*d*x + 4*I*c + 3/2) + 16*I*e^(2*I*d*x
+ 2*I*c + 3/2))*e^(1/2*I*d*x + 1/2*I*c)/sqrt(e^(2*I*d*x + 2*I*c) + 1))*e^(-5*I*d*x - 5*I*c)/(a^3*d)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \frac {i \int \frac {\left (e \sec {\left (c + d x \right )}\right )^{\frac {3}{2}}}{\tan ^{3}{\left (c + d x \right )} - 3 i \tan ^{2}{\left (c + d x \right )} - 3 \tan {\left (c + d x \right )} + i}\, dx}{a^{3}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*sec(d*x+c))**(3/2)/(a+I*a*tan(d*x+c))**3,x)

[Out]

I*Integral((e*sec(c + d*x))**(3/2)/(tan(c + d*x)**3 - 3*I*tan(c + d*x)**2 - 3*tan(c + d*x) + I), x)/a**3

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*sec(d*x+c))^(3/2)/(a+I*a*tan(d*x+c))^3,x, algorithm="giac")

[Out]

integrate(e^(3/2)*sec(d*x + c)^(3/2)/(I*a*tan(d*x + c) + a)^3, x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {{\left (\frac {e}{\cos \left (c+d\,x\right )}\right )}^{3/2}}{{\left (a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}\right )}^3} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e/cos(c + d*x))^(3/2)/(a + a*tan(c + d*x)*1i)^3,x)

[Out]

int((e/cos(c + d*x))^(3/2)/(a + a*tan(c + d*x)*1i)^3, x)

________________________________________________________________________________________